Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Environ Sci Pollut Res Int ; 30(30): 74838-74852, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2327378

ABSTRACT

Workplace violence (WPV) is a prevalent phenomenon, especially in the healthcare setting. WPV against healthcare workers (HCWs) has increased during the COVID-19 epidemic. This meta-analysis determined the prevalence and risk factors of WPV. A database search was conducted across six databases in May 2022, which was updated in October 2022. WPV prevalence among HCWs was the main outcome. Data were stratified by WPV/HCW type, pandemic period (early, mid, late), and medical specialty. WPV risk factors were the secondary outcome. All analyses were conducted through STATA. Newcastle Ottawa Scale evaluated the quality. Sensitivity analysis identified effect estimate changes. A total of 38 studies (63,672 HCWs) were analyzed. The prevalence of WPV of any kind (43%), physical (9%), verbal (48%), and emotional (26%) was high. From mid-pandemic to late-pandemic, WPV (40-47%), physical violence (12-23%), and verbal violence (45-58%) increased. Nurses had more than double the rate of physical violence (13% vs. 5%) than physicians, while WPV and verbal violence were equal. Gender, profession, and COVID-19 timing did not affect WPV, physical, or verbal violence risk. COVID-19 HCWs were more likely to be physically assaulted (logOR = 0.54; 95% CI: 0.10: 0.97). Most healthcare employees suffer verbal violence, followed by emotional, bullying, sexual harassment, and physical assault. Pandemic-related workplace violence increased. Nurses were twice as violent as doctors. COVID-19 healthcare employees had a higher risk of physical and workplace violence.


Subject(s)
COVID-19 , Workplace Violence , Humans , Workplace Violence/psychology , Pandemics , Surveys and Questionnaires , Cross-Sectional Studies , COVID-19/epidemiology , Health Personnel , Prevalence , Workplace
2.
Stoch Environ Res Risk Assess ; : 1-12, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2316507

ABSTRACT

The global pandemic caused by the outbreak of COVID-19 has posed significant risks to our health. Preventive measures such as closed management have greatly affected the economies, environments and societies of various countries. Economy, air pollution and income are three important interconnected aspects of sustainable development. However, current research lacks systematic quantitative analysis of their relationships. To fill the gap, this study adopts monthly data from January 2016 to April 2022 and constructs both a Simultaneous Equation Model (SEM) and a Time Varying Parameter Stochastic Volatility Vector Autoregressive (TVP-SV-VAR) model to empirically analyze the impact of COVID-19 on China's economy, air pollution and income. This study finds that the COVID-19 has a negative impact on China's economy and income, and a positive impact on air pollution, and the impact of the COVID-19 is systematic. In addition, there is an inverted-U shaped relationship between air pollution and economics, and a positive correlation between economic and income. The impact of COVID-19 on the economy, air pollution and income show a process of sharp fluctuations to gradual stabilization that gradually stabilized over time. This process is time-varying in the short-term, medium-term and long-term. The impacts are persistent at three different time points (before, during and after the outbreak of COVID-19), but the negative impact on the economy and income is persistent, while the positive impact on air pollution is limited. This study provides a more systematic and dynamic understanding of the COVID-19 preventive and mitigation measures in China and even the world, which helps to provide insights into the formulation of more comprehensive planning strategies in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s00477-023-02450-z.

3.
Sci Transl Med ; 14(662): eabn5168, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2308193

ABSTRACT

Although it has been more than 2 years since the start of the coronavirus disease 2019 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, therapies to treat COVID-19 and other inflammatory diseases remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and mortality to develop tailored immunotherapy strategies to halt disease progression. We assembled the Mount Sinai COVID-19 Biobank, which was composed of almost 600 hospitalized patients followed longitudinally through the peak of the pandemic in 2020. Moderate disease and survival were associated with a stronger antigen presentation and effector T cell signature. In contrast, severe disease and death were associated with an altered antigen presentation signature, increased numbers of inflammatory immature myeloid cells, and extrafollicular activated B cells that have been previously associated with autoantibody formation. In severely ill patients with COVID-19, lung tissue-resident alveolar macrophages not only were drastically depleted but also had an altered antigen presentation signature, which coincided with an influx of inflammatory monocytes and monocyte-derived macrophages. In addition, we found that the size of the alveolar macrophage pool correlated with patient outcome and that alveolar macrophage numbers and functionality were restored to homeostasis in patients who recovered from COVID-19. These data suggest that local and systemic myeloid cell dysregulation are drivers of COVID-19 severity and modulation of alveolar macrophage numbers and activity in the lung may be a viable therapeutic strategy for the treatment of critical inflammatory lung diseases.


Subject(s)
COVID-19 , Macrophages, Alveolar , Humans , Lung , Macrophages , Monocytes
4.
Viruses ; 15(3)2023 03 09.
Article in English | MEDLINE | ID: covidwho-2288827

ABSTRACT

OBJECTIVES: The objective of this prospective study was to investigate the role of adaptive immunity in response to SARS-CoV-2 vaccines. DESIGN AND METHODS: A cohort of 677 vaccinated individuals participated in a comprehensive survey of their vaccination status and associated side effects, and donated blood to evaluate their adaptive immune responses by neutralizing antibody (NAb) and T cell responses. The cohort then completed a follow-up survey to investigate the occurrence of breakthrough infections. RESULTS: NAb levels were the highest in participants vaccinated with Moderna, followed by Pfizer and Johnson & Johnson. NAb levels decreased with time after vaccination with Pfizer and Johnson & Johnson. T cell responses showed no significant difference among the different vaccines and remained stable up to 10 months after the study period for all vaccine types. In multivariate analyses, NAb responses (<95 U/mL) predicted breakthrough infection, whereas previous infection, the type of vaccine, and T cell responses did not. T cell responses to viral epitopes (<0.120 IU/mL) showed a significant association with the self-reported severity of COVID-19 disease. CONCLUSION: This study provides evidence that NAb responses to SARS-CoV-2 vaccination correlate with protection against infection, whereas the T cell memory responses may contribute to protection against severe disease but not against infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Self Report , Breakthrough Infections , Prospective Studies , Patient Acuity , Antibodies, Neutralizing , Vaccination , Antibodies, Viral
5.
Talanta ; 258: 124479, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2255880

ABSTRACT

The ongoing outbreak of the novel coronavirus disease 2019 (COVID-19) draws worldwide concerns due to its long incubation period and strong infectivity. Although RT-PCR-based methods are being widely applied for clinical diagnosis, timely and accurate diagnosis towards COVID-19 causing virus, the SARS-CoV-2, is still limited due to labor-intensive and time-consuming operations. Herein, we report a new viral RNA extraction method based on poly-(amino ester) with carboxyl group (PC)-coated magnetic nanoparticles (pcMNPs) for the sensitive detection of SARS-CoV-2. This method combines the lysis and binding steps into one step, and refines multiple washing steps into one step, giving a turnaround time of less than 9 min. Furthermore, the extracted pcMNP-RNA complexes can be directly introduced into subsequent RT-PCR reactions without elution. This simplified viral RNA method could be well adapted in fast manual and automated high-throughput nucleic acids extraction protocols suitable for different scenarios. A high sensitivity down to 100 copies/mL and a linear correlation between 100 and 106 copies/mL of SARS-CoV-2 pseudovirus particles are achieved in both protocols. Benefitting from the simplicity and excellent performances, this new method can dramatically improve the efficiency and reduce operational requirements for the early clinical diagnosis and large-scale SARS-CoV-2 nucleic acid screening.


Subject(s)
Magnetite Nanoparticles , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/analysis , RNA, Viral/genetics , Sensitivity and Specificity
6.
Leuk Lymphoma ; : 1-9, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2262628

ABSTRACT

Immunocompromised patients are susceptible to complications from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The mRNA vaccines BNT162b2 and mRNA-1273 are effective in immunocompetent adults, but have diminished activity in immunocompromised patients. We measured anti-spike SARS-CoV-2 antibody (anti-S) response, avidity, and surrogate neutralizing antibody activity in COVID-19 vaccinated patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Anti-S was induced in 89% of AML and 88% of MDS patients, but median levels were significantly lower than in healthy controls. SARS-CoV-2 antibody avidity and neutralizing activity from AML patients were significantly lower than controls. Antibody avidity was significantly greater in patients after mRNA-1273 versus BNT162b2; there were trends toward higher anti-S levels and greater neutralizing antibody activity after mRNA-1273 vaccination. Patients with AML and MDS are likely to respond to COVID-19 mRNA vaccination, but differences in anti-S levels, avidity, and neutralizing antibody activity may affect clinical outcomes and require further study.

7.
Am J Obstet Gynecol MFM ; 5(2): 100796, 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2244334

ABSTRACT

BACKGROUND: For some vaccine-preventable diseases, the immunologic response to vaccination is altered by a pregnant state. The effect of pregnancy on SARS-CoV-2 vaccine response remains unclear. OBJECTIVE: We sought to characterize the peak and longitudinal anti-S immunoglobulin G, immunoglobulin M, and immunoglobulin A responses to messenger RNA-based SARS-CoV-2 vaccination in pregnant persons and compare them with those in nonpregnant, reproductive-aged persons. STUDY DESIGN: We conducted 2 parallel prospective cohort studies among pregnant and nonpregnant persons who received SARS-CoV-2 messenger RNA vaccinations. Blood was collected at the time of first and second vaccine doses, 2 weeks post second dosage, and with serial longitudinal follow-up up to 41.7 weeks post vaccination initiation. Anti-S immunoglobulin M, immunoglobulin G, and immunoglobulin A were analyzed by enzyme-linked immunosorbent assay. We excluded those with previous evidence of SARS-CoV-2 infection by history or presence of antinucleocapsid antibodies. In addition, for this study, we did not include individuals who received a third or booster vaccine dosage during the study period. We also excluded pregnant persons who were not fully vaccinated (14 days post receipt of the second vaccine dosage) by time of delivery and nonpregnant persons who became pregnant through the course of the study. We studied the effect of gestational age at vaccination on the anti-S response using Spearman correlation. We compared the peak anti-S antibody responses between pregnant and nonpregnant persons using a Mann-Whitney U test. We visualized and studied the longitudinal anti-S antibody response using locally weighted scatterplot smoothing, Mann-Whitney U test, and mixed analysis of variance test. RESULTS: Data from 53 pregnant and 21 nonpregnant persons were included in this analysis. The median (interquartile range) age of the pregnant and nonpregnant participants was 35.0 (33.3-37.8) years and 36.0 (33.0-41.0) years, respectively. Six (11.3%) participants initiated vaccination in the first trimester, 23 (43.3%) in the second trimester, and 24 (45.3%) in the third trimester, with a median gestational age at delivery of 39.6 (39.0-40.0) weeks. The median (interquartile range) follow-up time from vaccine initiation to the last blood sample collected was 25.9 (11.9) weeks and 28.9 (12.9) weeks in the pregnant and nonpregnant cohort, respectively. Among pregnant persons, anti-S immunoglobulin G, immunoglobulin A, and immunoglobulin M responses were not associated with gestational age at vaccine initiation (all P>.05). The anti-S immunoglobulin G response at 2 weeks post second dosage was not statistically different between pregnant and nonpregnant persons (P>.05). However, the anti-S immunoglobulin M and immunoglobulin A responses at 2 weeks post second dosage were significantly higher in nonpregnant persons (P<.001 for both). The anti-S immunoglobulin G and immunoglobulin M levels 6 to 8 months after vaccine initiation fell to comparable proportions of the peak 2 weeks post second dosage antibody levels between pregnant and nonpregnant persons (immunoglobulin G P=.77; immunoglobulin M P=.51). In contrast, immunoglobulin A levels 6 to 8 months after vaccine initiation fell to statistically significantly higher proportions of peak 2 weeks post second dosage antibody levels in pregnant compared with nonpregnant persons (P=.002). Maternal anti-S immunoglobulin G levels were strongly correlated with umbilical cord anti-S immunoglobulin G levels (R=0.8, P<.001). CONCLUSION: The anti-S immunoglobulin A, immunoglobulin M, and immunoglobulin G response to SARS-CoV-2 vaccination in pregnancy is independent of gestational age of vaccine initiation. Maintenance of the immunoglobulin G response is comparable between pregnant and nonpregnant persons. The differential peak response of immunoglobulin M and immunoglobulin A and the differential decline of anti-S immunoglobulin A between pregnant and nonpregnant persons requires further investigation.

8.
Ann Clin Lab Sci ; 52(6): 871-879, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2168913

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses are contagious respiratory pathogens with similar symptoms but require different treatment and management strategies. This study investigated the differences in laboratory test result profiles between SARS-CoV-2 and influenza infected patients upon presentation to emergency department (ED). METHODS: Laboratory test results and demographic information from 723 influenza positive (2018/1/1 to 2020/3/15) and 1,281 SARS-CoV-2 positive (2020/3/11 to 2020/6/30) ED patients were retrospectively analyzed. The dataset was randomly divided into a training/validation set (2/3) and a test set (1/3) with the same SARS-CoV-2/influenza ratio. Four machine learning models in differentiating the laboratory profiles of RT-PCR confirmed SARS-CoV-2 and influenza positive patients were evaluated. The Shapley Additive Explanations technique was employed to visualize the impact of laboratory tests on the overall differentiation. Furthermore, the model performance was also evaluated in a new test dataset including 519 SARS-CoV-2 ED patients (2020/12/1 to 2021/2/28) and the previous influenza positive patients (2018/1/1 to 2020/3/15). RESULTS: A laboratory test result profile consisting of 15 blood tests, together with patient age, gender, and race can discriminate the two types of viral infections using a random forest (RF) model. The RF model achieved an area under the receiver operating characteristic curve (AUC) of 0.90 in the test set. Among the profile of 15 laboratory tests, the serum total calcium level exhibited the greatest contribution to the overall differentiation. Furthermore, the model achieved an AUC of 0.81 in a new test set. CONCLUSION: We developed a laboratory tests-based RF model differentiating SARS-CoV-2 from influenza, which may be useful for the preparedness of overlapping COVID-19 resurgence and future seasonal influenza.


Subject(s)
COVID-19 , Influenza, Human , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Influenza, Human/diagnosis , Retrospective Studies , Clinical Laboratory Techniques/methods
10.
Int J Med Sci ; 19(14): 2087-2092, 2022.
Article in English | MEDLINE | ID: covidwho-2144951

ABSTRACT

In this review, we discussed an interesting case infected with "COVID-19" (Corona Virus Disease 2019). The patients with Hodgkin's lymphoma recovered after infection with COVID-19. It may be that COVID-19 activates the patient's immune system, or it may be a coincidence. COVID-19 spike protein can interact with CD147 and use it as an entry to invade host cells. CD147 is a partner of SLC3A2, which is the chaperone subunit of cystine/glutamate reverse transporter (system XC). The catalytic subunit of system XC is SLC7A11. SLC7A11 mediated cysteine uptake plays a key role in ferroptosis. Through literature review and data analysis, we suggest that CD147, as a new potential COVID-19 infection entry, may also lead to ferroptosis of host cells. Our hypothesis is that spike protein of COVID-19 induced ferroptosis in host cells via CD147/SLC3A2/SLC7A11 complex. This is another explanation for the cancer patient recovered after COVID-19 infection.


Subject(s)
COVID-19 , Neoplasms , Humans , Spike Glycoprotein, Coronavirus , Data Analysis , Neoplasms/complications
11.
Health data science ; 2021, 2021.
Article in English | EuropePMC | ID: covidwho-2112028

ABSTRACT

Background New York City (NYC) experienced an initial surge and gradual decline in the number of SARS-CoV-2-confirmed cases in 2020. A change in the pattern of laboratory test results in COVID-19 patients over this time has not been reported or correlated with patient outcome. Methods We performed a retrospective study of routine laboratory and SARS-CoV-2 RT-PCR test results from 5,785 patients evaluated in a NYC hospital emergency department from March to June employing machine learning analysis. Results A COVID-19 high-risk laboratory test result profile (COVID19-HRP), consisting of 21 routine blood tests, was identified to characterize the SARS-CoV-2 patients. Approximately half of the SARS-CoV-2 positive patients had the distinct COVID19-HRP that separated them from SARS-CoV-2 negative patients. SARS-CoV-2 patients with the COVID19-HRP had higher SARS-CoV-2 viral loads, determined by cycle threshold values from the RT-PCR, and poorer clinical outcome compared to other positive patients without the COVID12-HRP. Furthermore, the percentage of SARS-CoV-2 patients with the COVID19-HRP has significantly decreased from March/April to May/June. Notably, viral load in the SARS-CoV-2 patients declined, and their laboratory profile became less distinguishable from SARS-CoV-2 negative patients in the later phase. Conclusions Our longitudinal analysis illustrates the temporal change of laboratory test result profile in SARS-CoV-2 patients and the COVID-19 evolvement in a US epicenter. This analysis could become an important tool in COVID-19 population disease severity tracking and prediction. In addition, this analysis may play an important role in prioritizing high-risk patients, assisting in patient triaging and optimizing the usage of resources.

12.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2058182

ABSTRACT

Importance Most healthcare institutions require employees to be vaccinated against SARS-CoV-2 and many also require at least one booster. Objective We determine the impact of vaccine type, demographics, and health conditions on COVID-19 vaccine side effects in healthcare professionals. Design A COVID-19 immunity study was performed at the 2021 American Association for Clinical Chemistry Annual Scientific meeting. As part of this study, a REDCap survey with cascading questions was administered from September 9, 2021 to October 20, 2021. General questions included participant demographics, past and present health conditions, smoking, exercise, and medications. COVID-19 specific questions asked about SARS-CoV-2 vaccine status and type, vaccine-associated side effects after each dose including any boosters, previous infection with COVID-19, diagnostic testing performed, and type and severity symptoms of COVID-19. Results There were 975 participants (47.1% male, median age of 50 years) who completed the survey. Pfizer was the most commonly administered vaccine (56.4%) followed by Moderna (32.0%) and Johnson & Johnson (7.1%). There were no significant differences in vaccine type received by age, health conditions, smoking, exercise, or type or number of prescription medications. Side effects were reported more frequently after second dose (e.g., Moderna or Pfizer) (54.1%) or single/only dose of Johnson & Johnson (47.8%). Males were significantly more likely to report no side effects (p < 0.001), while females were significantly more likely to report injection site reactions (p < 0.001), fatigue (p < 0.001), headache (p < 0.001), muscle pain (p < 0.001), chills (p = 0.001), fever (p = 0.007), and nausea (p < 0.001). There was a significant upward trend in participants reporting no side effects with increasing age (p < 0.001). There were no significant trends in side effects among different races, ethnicities, health conditions, medications, smoking status or exercise. In multivariate logistic regressions analyses, the second dose of Moderna was associated with a significantly higher risk of side effects than both the second dose of Pfizer and the single dose of Johnson & Johnson. Conclusions and relevance Younger people, females, and those receiving the second dose of Moderna had more COVID-19 vaccine side effects that per self-report led to moderate to severe limitations. As reported in other studies, the increase in side effects from Moderna may be explained by higher viral mRNA concentrations but be associated with additional protective immunity.

13.
iScience ; 25(7): 104612, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1895109

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare with previously unseen levels of morbidity and mortality. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a network of protein-metabolite interactions through targeted metabolomic and proteomic profiling in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity. Finally, we developed a novel composite outcome measure for COVID-19 disease severity based on metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and shows high predictive power of 0.83-0.93 in two independent datasets.

14.
Obstet Gynecol ; 139(3): 373-380, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1864995

ABSTRACT

OBJECTIVE: To describe maternal and umbilical cord blood anti-spike immunoglobulin (Ig)G levels at delivery with coronavirus disease 2019 (COVID-19) vaccination before and during pregnancy and to assess the association of prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and a vaccine booster dose with anti-spike maternal and umbilical cord IgG levels. METHODS: We conducted a retrospective cohort study of women with self-reported COVID-19 vaccination (Pfizer-BioNTech, Moderna, or Johnson & Johnson/Janssen), including a booster dose, during or before pregnancy, who delivered at 34 weeks of gestation or more. Maternal and umbilical cord blood samples at delivery were analyzed for semi-quantitative anti-spike IgG. We examined the association between timing of maternal vaccination and maternal and umbilical cord anti-spike levels using a rank sum test. The relationships between a prior history of SARS-CoV-2 infection and maternal and umbilical cord anti-spike IgG levels, and between a booster dose and maternal and umbilical cord anti-spike levels, were also evaluated using a rank sum test. RESULTS: We included data from 1,359 vaccinated pregnant women, including 20 women who received a booster dose, and 1,362 umbilical cord samples. Maternal anti-spike IgG levels were detectable at delivery regardless of timing of vaccination throughout pregnancy among fully vaccinated women; however, early third-trimester vaccination was associated with the highest anti-spike IgG levels in maternal and umbilical cord blood. Among women with a history of SARS-CoV-2 infection, maternal and cord blood antibody response achieved with vaccination in early pregnancy was comparable with third-trimester vaccination in pregnant women without a history of SARS-CoV-2 infection. A booster dose in the third trimester was associated with maternal anti-spike IgG levels greater than third-trimester vaccination in women with or without a history of SARS-CoV-2 infection. DISCUSSION: Vaccination against COVID-19 before and throughout pregnancy was associated with detectable maternal anti-spike IgG levels at delivery. A complete vaccination course, prior history of SARS-CoV-2 infection, and a third-trimester booster dose were associated with the highest maternal and umbilical cord antibody levels.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , Fetal Blood/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adult , Female , Humans , Immunization, Secondary , Pregnancy , Retrospective Studies
15.
Biosens Bioelectron ; 209: 114237, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1778012

ABSTRACT

Kinetics measurements of antigen-antibody binding interactions are critical to understanding the functional efficiency of SARS-CoV-2 antibodies. Previously reported chaotrope-based avidity assays that rely on artificial disruption of binding do not reflect the natural binding kinetics. This study developed a chaotrope- and label-free biolayer interferometry (BLI) assay for the real-time monitoring of receptor binding domain (RBD) binding kinetics with SARS-CoV-2 spike protein in convalescent COVID-19 patients. An improved conjugation biosensor probe coated with streptavidin-polysaccharide (SA-PS) led to a six-fold increase of signal intensities and two-fold reduction of non-specific binding (NSB) compared to streptavidin only probe. Furthermore, by utilizing a separate reference probe and biotin-human serum albumin (B-HSA) blocking process to subtracted NSB signal in serum, this BLI biosensor can measure a wide range of the dissociation rate constant (koff), which can be measured without knowledge of the specific antibody concentrations. The clinical utility of this improved BLI kinetics assay was demonstrated by analyzing the koff values in sera of 24 pediatric (≤18 years old) and 63 adult (>18 years old) COVID-19 convalescent patients. Lower koff values for SARS-CoV-2 serum antibodies binding to RBD were measured in samples from children. This rapid, easy to operate and chaotrope-free BLI assay is suitable for clinical use and can be readily adapted to characterize SARS-CoV-2 antibodies developed by COVID-19 patients and vaccines.


Subject(s)
Biosensing Techniques , COVID-19 , Adolescent , Adult , Antibodies, Neutralizing , Antibodies, Viral , Child , Humans , Immunologic Techniques , Interferometry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Streptavidin
19.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1484165

ABSTRACT

Longitudinal studies are needed to evaluate the SARS-CoV-2 mRNA vaccine antibody response under real-world conditions. This longitudinal study investigated the quantity and quality of SARS-CoV-2 antibody response in 846 specimens from 350 patients, comparing BNT162b2-vaccinated individuals (19 previously diagnosed with COVID-19, termed RecoVax; and 49 never diagnosed, termed NaiveVax) with 122 hospitalized unvaccinated (HospNoVax) and 160 outpatient unvaccinated (OutPtNoVax) COVID-19 patients. NaiveVax experienced delay in generating SARS-CoV-2 total antibodies (TAb) and surrogate neutralizing antibodies (SNAb) after the first vaccine dose (D1) but rapid increase in antibody levels after the second dose (D2). However, these never reached RecoVax's robust levels. In fact, NaiveVax TAb and SNAb levels decreased 4 weeks after D2. For the most part, RecoVax TAb persisted, after reaching maximal levels 2 weeks after D2, but SNAb decreased significantly about 6 months after D1. Although NaiveVax avidity lagged behind that of RecoVax for most of the follow-up periods, NaiveVax did reach similar avidity by about 6 months after D1. These data suggest that 1 vaccine dose elicits maximal antibody response in RecoVax and may be sufficient. Also, despite decreasing levels in TAb and SNAb over time, long-term avidity may be a measure worth evaluating and possibly correlating to vaccine efficacy.


Subject(s)
Antibody Formation , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2 , Vaccination
20.
Pathog Immun ; 6(1): 116-134, 2021.
Article in English | MEDLINE | ID: covidwho-1389907

ABSTRACT

The approved Pfizer and Moderna mRNA vaccines are well known to induce serum antibody responses to the SARS-CoV-2 Spike (S)-protein. However, their abilities to elicit mucosal immune responses have not been reported. Saliva antibodies represent mucosal responses that may be relevant to how mRNA vaccines prevent oral and nasal SARS-CoV-2 transmission. Here, we describe the outcome of a cross-sectional study on a healthcare worker cohort (WELCOME-NYPH), in which we assessed whether IgM, IgG, and IgA antibodies to the S-protein and its receptor-binding domain (RBD) were present in serum and saliva samples. Anti-S-protein IgG was detected in 14/31 and 66/66 of saliva samples from uninfected participants after vaccine doses-1 and -2, respectively. IgA antibodies to the S-protein were present in 40/66 saliva samples after dose 2. Anti-S-protein IgG was present in every serum sample from recipients of 2 vaccine doses. Vaccine-induced antibodies against the RBD were also frequently present in saliva and sera. These findings may help our understanding of whether and how vaccines may impede SARS-CoV-2 transmission, including to oral cavity target cells.

SELECTION OF CITATIONS
SEARCH DETAIL